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Received (in Cambridge, UK) 25th November 2005, Accepted 17th January 2006

First published as an Advance Article on the web 30th January 2006

DOI: 10.1039/b516718c

The synthesis of H-bonded bent-core side-chain liquid crystal

polymers carried out by two alternative synthetic routes and

their properties are reported.

In the last few decades supramolecular chemistry has provided a

fantastic tool to create new and ingenious materials with a wide

variety of functional properties.1 In this respect, hydrogen bonding

was, is and certainly will be one of the easiest and most useful

strategies to build new molecules and supramolecular architec-

tures. In many cases natural motifs—but also more simple

systems—can be used to produce artificial biological systems and

numerous other functional materials for very different purposes.

Liquid crystals have a place in supramolecular chemistry in their

own right, but the H-bonded self-assembly approach has

significantly enriched the variety and possibilities of the so-called

fourth state of matter and provided many types of liquid crystalline

phases, either with calamitic or columnar arrangements.2

Furthermore, the discovery of the new mesophases exhibited by

bent-shaped molecules (i.e. SmCP) has also been published

recently.3 These bent-materials exhibit similar dielectric and optical

behavior to those described for covalent molecules.4 The majority

of H-bonded liquid crystal systems have been developed for low

molecular weight materials. However, self-assembled polymers

have evolved greatly and, since Kato and Fréchets pioneering

work on side-chain mesogenic polymers,5a this approach has

gained significance5b–d not only in the liquid crystal field but also in

the fundamental design of supramolecular side-chain functiona-

lized polymers in general.

In this paper we report our results on the formation of bent-

shaped side-chain polymers formed using the self-assembly

approach. Bent-core molecules are of prime interest in liquid

crystal research due to their special properties, which arise from

their unique molecular structure.4a–e Features such as the

occurrence of polar order within layers or columns as well as the

appearance of some supramolecular chiral structures from non-

chiral molecules are of fundamental scientific interest, especially

given that this chirality can be switched under external electric

fields. However, there are very few reports concerning polymers

containing bent-core mesogens4e and even less on side-chain

structures.4f

In order to achieve our aim of preparing H-bonded bent-core

side-chain polymers, two different strategies were explored: (i)

Route A, where the self-assembly step follows the polymerization

and (ii) Route B, where reactive monomers are created by self-

assembly followed by photopolymerization (Scheme 1).

Single pyridine/benzoic acid hydrogen-bonded complexes were

selected for this work. Non-mesomorphic stilbazoles 1 and 2 were

used as H-acceptors3 (Scheme 2). Acids M6, M11 and polymers

P6 and P11 were used as H-donors in order to obtain similar

H-bonded-side-chain polymers through both synthetic routes.

Route A was used to prepare four self-assembled polymers: 1-

P6, 1-P11, 2-P6 and 2-P11.6a These polymers were studied by

polarizing optical microscopy (OM), differential scanning calori-

metry (DSC) and X-ray diffraction (XRD). The results of these

studies are collected in Table 1. Despite the non-mesomorphic

nature of the components, all of the macromolecules are liquid

crystals.6b More interestingly, the XRD patterns at variable

temperatures reveal features in good agreement with those

reported for the mesophases induced by bent-shaped molecules.

Very similar patterns were observed for polymers 1-P11, 2-P6

and 2-P11. In the wide-angle region there is diffuse scattering,

whereas in the small-angle regions there are sharp layer reflections

up to third order (Table 2 and ESI{). This indicates well-defined

layer structures for the mesophase in all cases, i.e., the

macromolecules arrange themselves in smectic phases without in-

plane order. Differences between the estimated length of the side-

structures [from 57 Å (1-P6) to 70 Å (2-P11)] and the interlayer

distances measured suggest a tilted molecular disposition within

the liquid crystalline phase. These data, the grainy textures

observed by OM and the large enthalpic changes determined for

their mesophase–liquid transitions are consistent with a SmCP

phase rather than with a conventional SmC mesophase. (see

Figure S6{ and refs. 4b–e). However no further experimental

evidence to support the polar nature of these lamellar phases could

be achieved; thus the label SmC has been used for these

mesophases.7 The large interlayer distance measured for 2–P6,

compared both to the other polymers and to the estimated length

of its side-structure, is noteworthy. This can be explained in terms

of a bilayer structure. Bilayer smectic phases (i.e., SmA2) have been

described for side-chain polymers possessing short spacers.8 The
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presence of the short spacer also seems to promote the columnar

rectangular arrangement—also characteristic of low-molecular

weight bent-mesogens—found for the shortest polymer 1-P6.

Additionally, XRD and OM of all these polymers at room

temperature indicate columnar and lamellar glasses that all are

stable over weeks.

To explore the alternative Route B, the ‘‘reactive monomers’’

1-M6, 1-M11, 2-M6 and 2-M11 were prepared and character-

ized.6a,9a These complexes exhibit a switchable SmCP meso-

phase—with the exception of complex 1-M6, which does not form

a mesophase (Tables 1 and 2). Photopolymerization studies were

focused on 1-M11.9b The conversion vs. irradiation time and the

polymerization rate vs. conversion relationship in the SmCP

mesophase were evaluated from the photopolymerization

exotherms of the DSC curves.{ From these data, a final conversion

of around 74% in the polar mesosophase was determined.

Furthermore, free thin films of this photopolymer (P/1-M11) were

also prepared and studied by MO, DSC and XRD. These studies

show that P/1-M11 exhibits rather similar mesogenic properties to

polymer 1-P11 prepared by Route A, but with a more crystalline

nature. This fact is clearly observed from the DSC thermograms

(Table 1 and ESI{). Likewise, significant stabilization of the liquid

crystalline order is achieved upon polymerization and, in

agreement with previous results,10 polymerization leads to a 10%

increase in the layer spacing (c) in the smectic order (Table 2).

Interestingly Route B allowed to prepare thin films of P/1-M11 in

ITO coated-cells by the in situ polymerization of 1-M11 within the

cells. However, neither electrooptic switching nor second harmonic

generation activity were detected for these samples in the

mesophase.11,12 Thus, the polar order of the lamellar liquid

crystalline phase of this material could not be proven. Both

synthetic routes afford highly viscous polymethacrylates. To

overcome this drawback different alternatives to prepare more

flexible H-bonded polymers containing bent-core mesogens are

now being addressed.

In summary, we have shown that the versatility of non-covalent

side-chain functionalized polymers could be extended to bent-core

mesogenic materials. These results can help to design a range of

different materials based on the unique bent-shaped molecules and

their remarkable liquid crystalline phases, a new field that has a

very exciting future. Furthermore, the work reported here concerns

not only the synthesis of this type of polymer in solution, but also

support the synthetic possibilities of soft phases, providing a bank

of alternatives from which to choose.
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Table 1 Liquid crystalline properties of the studied materials
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